World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

Plos Genetics : the Evolution of Spinnable Cotton Fiber Entailed Prolonged Development and a Novel Metabolism, Volume 4

By Olsen, Ken

Click here to view

Book Id: WPLBN0003926152
Format Type: PDF eBook :
File Size:
Reproduction Date: 2015

Title: Plos Genetics : the Evolution of Spinnable Cotton Fiber Entailed Prolonged Development and a Novel Metabolism, Volume 4  
Author: Olsen, Ken
Volume: Volume 4
Language: English
Subject: Journals, Science, Genetics
Collections: Periodicals: Journal and Magazine Collection (Contemporary), PLoS Genetics
Historic
Publication Date:
Publisher: Plos

Citation

APA MLA Chicago

Olsen, K. (n.d.). Plos Genetics : the Evolution of Spinnable Cotton Fiber Entailed Prolonged Development and a Novel Metabolism, Volume 4. Retrieved from http://www.nationalpubliclibrary.com/


Description
Description : A central question in evolutionary biology concerns the developmental processes by which new phenotypes arise. An exceptional example of evolutionary innovation is the single-celled seed trichome in Gossypium (‘‘cotton fiber’’). We have used fiber development in Gossypium as a system to understand how morphology can rapidly evolve. Fiber has undergone considerable morphological changes between the short, tightly adherent fibers of G. longicalyx and the derived long, spinnable fibers of its closest relative, G. herbaceum, which facilitated cotton domestication. We conducted comparative gene expression profiling across a developmental time-course of fibers from G. longicalyx and G. herbaceum using microarrays with :22,000 genes. Expression changes between stages were temporally protracted in G. herbaceum relative to G. longicalyx, reflecting a prolongation of the ancestral developmental program. Gene expression and GO analyses showed that many genes involved with stress responses were upregulated early in G. longicalyx fiber development. Several candidate genes upregulated in G. herbaceum have been implicated in regulating redox levels and cell elongation processes. Three genes previously shown to modulate hydrogen peroxide levels were consistently expressed in domesticated and wild cotton species with long fibers, but expression was not detected by quantitative real time-PCR in wild species with short fibers. Hydrogen peroxide is important for cell elongation, but at high concentrations it becomes toxic, activating stress processes that may lead to early onset of secondary cell wall synthesis and the end of cell elongation. These observations suggest that the evolution of long spinnable fibers in cotton was accompanied by novel expression of genes assisting in the regulation of reactive oxygen species levels. Our data suggest a model for the evolutionary origin of a novel morphology through differential gene regulation causing prolongation of an ancestral developmental program.

 

Click To View

Additional Books


  • Plos Genetics : Fluctuations in Spo0A Tr... (by )
  • Plos Genetics : Increased Maternal Genom... (by )
  • Plos Genetics : Revisiting Heterochromat... (by )
  • Plos Genetics : Genome-wide Analysis of ... (by )
  • Plos Genetics : Statistical Analysis of ... (by )
  • Plos Genetics : Dyschronic, a Drosophila... (by )
  • Plos Genetics : Natural Selection Affect... (by )
  • Plos Genetics : Blood-informative Transc... (by )
  • Plos Genetics : Dna Methylation Supports... (by )
  • Plos Genetics : Atr and Chk1 Suppress a ... (by )
  • Plos Genetics : Igf1R Signaling is Indis... (by )
  • Plos Genetics : a Simple Screen to Ident... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from National Public Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.